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Abstract
The new approach to the analysis of four-body systems and computation of
various four-body integrals is proposed. The approach is based on the use
of six perimetric coordinates which can be introduced for an arbitrary four-
body system. The proper (i.e. non-conflicting) definition of the four-body
perimetric coordinates is given for an arbitrary four-body system. It is shown
that these six internal perimetric coordinates describe all possible configurations
in an arbitrary four-body system and can be used to simplify computations of
many four-body integrals written in the relative coordinates r12, r13, r23, r14, r24

and r34. In addition to this, a number of new, very effective procedures for
variational computation of different four-body systems can now be developed.

PACS numbers: 02.30.Uu, 21.45.+v, 36.10.Dr

1. Introduction

In this study, we consider the problem which has a principal value for the physics of four-
body systems. The solution of this problem will mean a revolutionary turn for the future
analytical considerations and for highly accurate computations of many four-body (quantum)
systems. Note that the current progress achieved in theoretical studies of four-body systems
is very modest in comparison to the three-body case. The main problem here is related to
very inefficient approaches which are used to compute various four-body integrals. Below,
we propose another approach based on the use of four-body perimetric coordinates. The
four-body perimetric coordinates introduced in this study have a number of advantages
in actual computations. In particular, the use of four-body perimetric coordinates must
simplify numerical and analytical calculations of various four-body integrals written in relative
coordinates. Also, an extensive development of highly accurate numerical methods for four-
body systems will become possible and actual.

Below, we introduce the six four-body perimetric coordinates which are independent and
always positive. The use of these perimetric coordinates allows one to transform currently
used, very complicated procedure for four-body computations into a process which is only
slightly more complicated than analogous computations for three-body systems. In the case
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of three-body systems, the use of three truly independent perimetric coordinates u1, u2 and
u3 instead of relative coordinates r12, r13, r23 drastically simplifies all problems related to
the three-body integral computations (see below). For the first time numerous advantages
of the three-body perimetric coordinates have been noticed by C L Pekeris [1] who was a
geophysicist at that time. Later, he used the three-body perimetric coordinates in a number of
studies of the helium atom and helium-like ions (see, e.g., [2] and references therein).

For an arbitrary three-body system the perimetric coordinates are introduced in the
following way

u1 = 1
2 (r12 + r13 − r23), u2 = 1

2 (r12 + r23 − r13), u3 = 1
2 (r13 + r23 − r12), (1)

where rij ≡ rji = |ri − rj | (i �= j = (1, 2, 3)) are the three interparticle distances (scalars).
The variables rij are also called by the relative coordinates (= interparticle separations),
emphasizing the principal difference between them and Cartesian coordinates ri of the three
particles, where i = (1, 2, 3). Note that the relative coordinates r32, r31, r21 and, therefore,
perimetric coordinates u1, u2, u3 are translationally and rotationally invariant. Furthermore,
the three perimetric coordinates u1, u2, u3 are truly independent and each of them changes
from 0 to +∞. The relations of perimetric coordinates with the relative coordinates are also
linear and simple:

r12 = u1 + u2, r13 = u1 + u3, r23 = u2 + u3. (2)

It is interesting to note that the surface S of the triangle formed by the three particles (123)
written in perimetric coordinates takes a very simple form:

S =
√

(u1 + u2 + u3)u1u2u3. (3)

However, the real importance of perimetric coordinates and their numerous advantages for
computations and analytical considerations of various three-body systems can be understood
by applying these coordinates to many different problems.

In general, the four-body perimetric coordinates cannot be defined in the same way as for
the three-body systems. The definition of the four-body perimetric coordinates is based on a
number of facts from the geometry of polyhedrons, rather than from elementary geometry of
plane triangles. In a number of earlier works we have discussed an approach which can be used
to introduce the six independent perimetric coordinates for an arbitrary four-body system. At
that time, however, it was not clear how to deal with additional troubles arising in this process.
Now, all problems have been solved and our main goal in this work is to introduce the six
independent perimetric coordinates explicitly. Our present analysis starts from the discussion
of the three-body case. Then we consider the definition and computations of the different
basic four-body integrals. In section 4, the six independent four-body perimetric coordinates
are introduced. In section 5, the basic four-body integral I4 is computed with the use of the
six four-body perimetric coordinates. Concluding remarks can be found in the final section.
The appendix contains a brief review of the closely related Hylleraas method developed for
the four-body atomic systems.

2. Three-body systems

In this section, we illustrate how by using the three-body perimetric coordinates u1, u2

and u3 instead of relative coordinates r32, r31 and r21 one can simplify numerical/analytical
computation of various three-body integrals. Our main interest, however, is related to those
three-body integrals which are needed to solve the bound state three-body problems. In
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general, such integrals can be reduced to one of the following forms

I3 =
∫ ∞

0
exp(−a1r32) dr32

∫ ∞

0
exp(−a2r31) dr31

∫ r31+r32

|r31−r32|
F(r32, r31, r21) exp(−a3r21) dr21

=
∫∫∫

dr32 dr31 dr21F(r32, r31, r21) exp(−a1r32 − a2r31 − a3r21)

= 1

8π2

∫∫∫
d3r32 d3r31F(r32, r31, r21) exp(−a1r32 − a2r31 − a3r21) (4)

where F(x, y, z) is a regular/analytical function of the x, y and z variables.
In turn, each of these integrals can be approximated by the finite sums of the following

power-type integrals J3(a1, a2, a3; n1, n2, n3)

J3 =
∫ ∞

0
r

n1
32 exp(−a1r32) dr32

∫ ∞

0
r

n2
31 exp(−a2r31) dr31

∫ r31+r32

|r31−r32|
r

n3
21 exp(−a3r21) dr21. (5)

The direct analytical computation of this and other similar integrals is a quite complicated
problem. However, by introducing the three perimetric coordinates u1 = 1

2 (r31 + r21 − r32),

u2 = 1
2 (r32 + r21 − r31), u3 = 1

2 (r32 + r31 − r21) one may significantly simplify this problem.
In fact, the integral J3(a1, a2, a3; n1, n2, n3) is easily computed with the use of the following
formula

J3 = 2
∫ ∞

0

∫ ∞

0

∫ ∞

0
(u1 + u2)

n3(u1 + u3)
n2(u2 + u3)

n1 exp(−(a2 + a3)u1)

× exp(−(a1 + a3)u2) exp(−(a1 + a2)u3) du1 du2 du3

= 2
n1∑

k1=0

n2∑
k2=0

n3∑
k3=0

Ck1
n1

Ck2
n2

Ck3
n3

m3!m2!m1!

(a1 + a2)m3+1(a1 + a3)m2+1(a2 + a3)m1+1
(6)

where Ck
n = n!

k!(n−k)! are the binomial coefficients, m1 = k1 + k2,m2 = n3 − k3 and m3 =
n1 − k1 + n2 − k2 (all these values are non-negative) and ai + aj > 0 for i �= j = 1,
2, 3. In fact, the analytical computation of the J3 integral in perimetric coordinates is
reduced to the three independent Laplace transformations of the power-type expressions. The
considered J3 example shows an obvious advantage of perimetric coordinates for analytical
and numerical computation of the regular three-body integrals. In actual applications, the
perimetric three-body coordinates provide some other important advantages. For instance,
only perimetric coordinates are appropriate for developing very fast and effective algorithms
for optimization of the nonlinear parameters in trial wavefunctions [3]. Due to this and other
similar reasons, recently all our trial wavefunctions for arbitrary three-body systems have been
written explicitly in the perimetric coordinates u1, u2 and u3.

The formula, equation (6), explicitly solves the problem of calculation of an arbitrary
three-body (regular) integral, equation (5). An alternative approach is based on the use of
explicit formula for the integral, equation (5), with zero powers of all relative coordinates, i.e.

J3 =
∫ ∞

0
exp(−a1r32) dr32

∫ ∞

0
exp(−a2r31) dr31

∫ r31+r32

|r31−r32|
exp(−a3r21) dr21

= 2

(a + b)(a + c)(b + c)
= J3(a, b, c; 0, 0, 0) (7)

which is also easily computed in perimetric coordinates. Then the right-hand side of this
formula must be differentiated as many times as needed to produce the required powers of all
relative coordinates. The explicit relation is

J3(a, b, c; k, l,m) = (−1)k+l+m ∂k+l+mJ3(a, b, c; 0, 0, 0)

∂ka∂lb∂mc
. (8)
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The use of this formula is another way to compute all regular three-body integrals needed in
actual computations.

3. Four-body systems

In contrast with the three-body case there are a number of different four-body integrals which
can be considered as the basic four-body integrals and each can be used to develop the highly
accurate procedure. In this section, we consider a few examples of such integrals. In the
following sections, we shall show that the use of four-body perimetric coordinates simplifies
the analysis and numerical computation of an arbitrary four-body integral. We begin with the
consideration of the basic four-body integral I4(a12, a13, a14, a23, a24, a34) written in the form

I4(a12, a13, a23, a14, a24, a34) =
∫∫∫∫∫∫

dr12 dr13 dr23 dr14 dr24 dr34

× exp(−a12r12 − a13r13 − a23r23 − a14r14 − a24r24 − a34r34) (9)

where a12, a13, a23, a14, a24 and a34 are the nonlinear parameters. The analytical and numerical
computation of this integral is almost impossible, since twenty four additional inequalities must
always be obeyed for the six relative coordinates. For instance, for the r23 and r24 coordinates
one finds

min(|r13 − r12|, |r34 − r24|) � r23 � max(r13 + r12, r34 + r24) (10)

min(|r12 − r14|, |r23 − r34|) � r24 � max(r12 + r14, r23 + r34) (11)

i.e. four inequalities for each of the r23 and r24 coordinates. There are also sixteen more similar
inequalities for four other relative coordinates r12, r13, r14 and r34. All these inequalities are
related to each other and this transforms computation of the I4 integral, equation (9), into an
extremely complex task. This problem has not been solved in earlier four-body studies.

In actual applications, the unknown basic four-body integral I4 is replaced by another
four-body integral I4(a12, a13, a23, a14, a24, a34) defined in [4]

I4(a12, a13, a23, a14, a24, a34) =
∫∫∫

d3r14 d3r24 d3r34

r12r13r14r23r24r34
exp(−a12r12 − a13r13 − a23r23)

× exp(−a14r14 − a24r24 − a34r34) (12)

where a12, a13, a23, a14, a24 and a34 are the nonlinear parameters. The integral I4 can be
computed analytically and numerically with the use of some currently developed methods
(see, e.g., [4, 5]). A few examples of the I4 integrals computed numerically with the use of
our method [5] (parameters a23, a24 and a34 are small in comparison a12, a13 and a14) can be
found in table 1. In general, each of the basic integrals determines the corresponding metric
in the six-dimensional space of four-body functions. Moreover, each of these integrals can be
used to develop a separate, highly accurate, numerical method for four-body computations.

Note that in contrast with the three-body case, the basic four-body integrals I4 and I4

belong to the two different classes of four-body integrals. Indeed, the reduction of the I4

integral to the form of the I4 integral produces the following expression

I4 = 16π2
∫∫∫∫∫∫

dr12 dr13 dr14 dr23 dr24 dr34[(
r2

34 − r2
12

)(
r2

24 − r2
31

)(
r2

14 − r2
23

) − S(rij )
] 1

2

× exp(−a12r12 − a13r13 − a23r23 − a14r14 − a24r24 − a34r34) (13)
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Table 1. The basic four-body integrals I4(a12, a13, a23, a14, a24, a34) and J4(K, L, M, n1, n2,

n3, α, β, γ ) determined for different values of the parameters. In all J4 integrals in this table
α = 2.55, β = 3.33 and γ = 2.19.

a12 a13 a23 a14 a24 a24 I4(a12, a13, a23, a14, a24, a34)

1.45 2.11 0.073 2.34 0.051 0.028 53.485 524 063 312 394 377 914 75
2.45 1.83 0.037 2.85 0.028 0.028 31.735 887 493 889 782 020 519 46
3.45 2.83 0.057 3.15 0.048 0.061 13.241 947 762 748 636 706 061 20
4.45 3.83 0.077 3.25 0.058 0.081 7.262 555 920 538 248 299 302 260

n1 n2 n3 K L M J4(K, L,M, n1, n2, n3, α, β, γ )

2 1 1 3 3 3 1.060 253 575 329 366 412 291 388 165 8060 × 102

2 1 1 5 5 5 1.954 630 466 219 216 718 952 347 577 6488 × 106

2 1 1 7 7 7 1.694 354 329 196 115 014 113 261 665 7577 × 1011

0 1 1 0 1 1 6.148 992 526 558 168 137 734 507 505 0335 × 10−3

1 0 2 3 0 −1 6.414 013 396 200 065 232 059 221 183 9672 × 10−2

where the function S(rij ) is

S(rij ) = r2
14r

2
24r

2
34 + r2

14r
2
12r

2
13 + r2

24r
2
23r

2
12 + r2

34r
2
13r

2
23 + r2

14r
2
23

× (
r2

14 + r2
23 − r2

24 − r2
34 − r2

12 − r2
13

)
+ r2

24r
2
13

(−r2
14 + r2

24 − r2
34 − r2

12 − r2
23 + r2

13

)
+ r2

34r
2
12

(−r2
14 − r2

24 + r2
34 + r2

12 − r2
23 − r2

13

)
. (14)

Now, it is easy to see that the partial derivatives of the I4 integral equation (9) upon the nonlinear
parameters a12, a13, a23, a14, a24 and a34 will never coincide with either the I4 integral
equation (13), or with one of its partial derivatives. This means that the I4 and I4 integrals
belong to the two different families of six-dimensional (i.e. four-body) integrals. Further
analysis shows that such a difference between I4 and I4 integrals cannot be eliminated by
using various substitutions and/or transformations of radial variables. Note that in the three-
body case, the corresponding I3 and I3 integrals are essentially identical. Another type of the
important four-body integrals is considered in the appendix.

The four-body integral I4(a12, a13, a23, a14, a24, a34) has a number of advantages in actual
computations. For instance, the closed analytical form for this integral allows one to compute
analytically all derivatives of the fifth and sixth orders which are needed in real variational
computations. Furthermore, the finite-term form of these derivatives can be used to track all
possible singularities, i.e. those values of the nonlinear parameters a12, a13, a23, a14, a24, a34

at which the integral I4 and/or its derivatives are singular. In actual computations singularity
usually means the rapid loss of numerical precision. For the I4(a12, a13, a23, a14, a24, a34)

integral, equation (12), and for the J4 integral from the appendix such a separation of
singularities is impossible.

The four-body perimetric coordinates defined in the following sections allows one
to compute the basic four-body integral I4(a12, a13, a23, a14, a24, a34). However, these
coordinates are also very useful for many other purposes, including analytical/numerical
computation of many different four-body integrals. Moreover, the four-body perimetric
coordinates can be used to analyse and predict all problems related to the convergence of
various four-body integrals, including the basic four-body integrals I4. The principal point here
is a possibility of using the negative values for some nonlinear parameters a12, a13, a23, a14, a24

and a34. In many cases the negative parameters may accelerate the overall convergence of
the whole procedure. On the other hand, they also produce various instability problems,
when the overall numerical accuracy of the method is lost rapidly. By using four-body
perimetric coordinates one can find all essential numerical restrictions of the values of
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nonlinear parameters a12, a13, a23, a14, a24 and a34. Some of such restrictions for the nonlinear
parameters are obtained and discussed in section 5.

4. Four-body perimetric coordinates

Our present approach is based on the introduction of the six independent perimetric
coordinates. These six coordinates will be used later instead of the six relative coordinates
r12, r13, r23, r14, r24 and r34. Here and everywhere below rij ≡ rji are the relative coordinates
between the two particles i and j , i.e. rij = |ri − rj |, where ri are the Cartesian coordinates of
the particles i �= j = 1, 2, 3, 4. The six independent perimetric coordinates for an arbitrary
four-body system are introduced in the following way. First, note that, in the general case, the
six interparticle vectors rij = ri − rj = −rji (where i �= j = (1, 2, 3, 4)) form a tetrahedron.
Such a tetrahedron has four vertices, six edges (rij ) and four faces. The four particles are
assumed to be placed in each of the four vertices. The corresponding faces of this tetrahedron
can be designated as (123) = U, (124) = T , (134) = W and (234) = S. The six edges
coincide with the corresponding relative coordinates r12, r13, r23, r14, r24 and r34.

Now, for the triangles at each of the faces one can introduce three perimetric coordinates.
Let us designate those coordinates as u1, u2, u3 (for the U = (123) triangle), t1, t2, t3 (for the
T = (124) triangle), w1, w2, w3 (for the W = (134) triangle) and s1, s2, s3 (for the S = (234)

triangle). The perimetric coordinates defined for each triangle are simply (linearly) related to
the relative coordinates, e.g., for the U triangle: u1 = 1

2 (r12 + r13 − r23), u2 = 1
2 (r12 + r23 − r13)

and u3 = 1
2 (r13 + r23 − r12). Analogous relations for other three triangles T ,W, S are

t1 = 1
2 (r12 + r14 − r24), t2 = 1

2 (r12 + r24 − r14), t3 = 1
2 (r24 + r14 − r12),

s1 = 1
2 (r34 + r24 − r23), s2 = 1

2 (r23 + r24 − r34), s3 = 1
2 (r34 + r23 − r24),

w1 = 1
2 (r13 + r14 − r34), w2 = 1

2 (r14 + r34 − r13), w3 = 1
2 (r34 + r13 − r14).

(15)

All these coordinates are positive, since the corresponding triangle conditions |rik − rjk| �
rij � rik + rjk are obeyed for each relative coordinate rij .

The 12 inverse relations take the form

u1 + u2 = r12, t1 + t2 = r12, s2 + s3 = r23, w1 + w3 = r13,

u1 + u3 = r13, t3 + t1 = r14, s2 + s1 = r24, w2 + w3 = r34, (16)

u2 + u3 = r23, t3 + t2 = r24, s3 + s1 = r34, w2 + w1 = r14.

As follows from these equations there are the six additional constrains for the 12 perimetric
coordinates. The number of constrains equals to the number of edges in the tetrahedron and
also equals to the number of relative coordinates. These conditions take the form

u1 + u2 = r12 = t1 + t2, u1 + u3 = r13 = w1 + w3, u2 + u3 = r23 = s2 + s3,

t1 + t3 = r14 = w1 + w2, t2 + t3 = r24 = s1 + s2, w2 + w3 = r34 = s1 + s3.
(17)

By using these six constrains one can exclude six (of original twelve) perimetric
coordinates. The six remaining perimetric coordinates can be considered as the four-body
perimetric coordinates, or independent perimetric coordinates at the tetrahedron surface. In
fact, there are a few possible and different ways to choose these six independent perimetric
coordinates. Below, we shall choose them in the following way. Three of these perimetric
coordinates coincide with the u1, u2, u3 perimetric coordinates in the U triangle. It is clear that
such a choice provides a uniform correspondence with the limiting (or degenerate) three-body
case. Each of these three additional perimetric coordinates is chosen from different triangles
at the tetrahedron surface, i.e. from the T ,W or S triangles, respectively. In fact, below we
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shall choose the t3, w3 and s3 coordinates. By using these coordinates one can find the explicit
expressions for the six remaining perimetric coordinates:

w1 = u1 + u3 − w3, s1 = t3 + w3 − u3, t1 = u1 + s3 − w3,

w2 = t3 + s3 − u3, s2 = u2 + u3 − s3, t2 = u2 + w3 − s3.
(18)

All these values must be positive. This produces, in principle, six additional inequalities:

w3 � u1 + u3, u3 � t3 + w3, w3 � u1 + s3

u3 � t3 + s3, s3 � u2 + u3, s3 � u2 + w3.
(19)

Now, it is straightforward to check that the following equations

w1 + w3 = u1 + u3 = r13, t1 + t2 = u1 + u2 = r12, s2 + s3 = u2 + u3 = r23

t3 + t1 = w2 + w1 = r14, t3 + t2 = s1 + s2 = r24, s1 + s3 = w2 + w3 = r34

(20)

are always obeyed. This can be considered as the first test for our approach.
Thus, for an arbitrary four-body problem instead of the six relative (or interparticle)

coordinates r12, r13, r23, r14, r24 and r34 one can introduce the six independent perimetric
coordinates u1, u2, u3, t3, s3 and w3

u1 = 1
2 (r12 + r13 − r23), u2 = 1

2 (r12 + r23 − r13), u3 = 1
2 (r13 + r23 − r12)

t3 = 1
2 (r14 + r24 − r12), s3 = 1

2 (r34 + r23 − r24), w3 = 1
2 (r34 + r13 − r14).

(21)

The corresponding inverse relations are

r12 = u1 + u2, r13 = u1 + u3, r23 = u2 + u3,

r14 = u1 + s3 + t3 − w3, r24 = u2 + t3 + w3 − s3, r34 = t3 + s3 + w3 − u3.
(22)

From these definitions of the six perimetric coordinates u1, u2, u3, t3, s3 and w3 we may assume
that only these six variables are needed to consider an arbitrary four-body problem. The six
variables s1, s2, t1, t2, w1, w2 mentioned above can be considered as some supplementary
values which can be ignored in further analysis. However, all six inequalities, equation (19),
must be obeyed in any case.

Note also that from equation (22) and from the condition ri4 � 0 for i = 1, 2, 3, one finds
the following inequalities:

w3 � u1 + s3 + t3, s3 � u2 + t3 + w3, u3 � t3 + s3 + w3. (23)

It should be mentioned, however, that these three inequalities (as well as all twenty-four
original inequalities, equations (10), (11), etc) are automatically obeyed, if the six conditions,
equation (19), hold for the six perimetric coordinates u1, u2, u3, t3, w3 and s3, and each of
these coordinates is positive.

To conclude this section we need to show that any operator originally written in the
relative coordinates can be re-written in the four-body perimetric coordinates u1, u2, u3, t3, w3

and s3. In fact, if such an operator is an analytical functions of interparticle coordinates
r12, r13, r23, r14, r24 and r34, then their expressions given by equation (22) must be used. Such
a substitution essentially solves the problem in this case. For differential operators of the first
order, the corresponding relations take the form

∂

∂r12
= ∂

∂u1
+

∂

∂u2
,

∂

∂r13
= ∂

∂u1
+

∂

∂u3
,

∂

∂r23
= ∂

∂u2
+

∂

∂u3
,

∂

∂r14
= ∂

∂u1
+

∂

∂s3
+

∂

∂t3
− ∂

∂w3
,

∂

∂r24
= ∂

∂u2
+

∂

∂t3
+

∂

∂w3
− ∂

∂s3
,

∂

∂r34
= ∂

∂t3
+

∂

∂s3
+

∂

∂w3
− ∂

∂u3
.

The differential operators of higher order can be obtained as the powers of these expressions.
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5. Computation of the basic four-body integral I4

Thus, in the previous section we have shown that the following six coordinates

u1 = 1
2 (r13 + r12 − r23), u2 = 1

2 (r12 + r23 − r13), u3 = 1
2 (r23 + r13 − r12),

s3 = 1
2 (r34 + r23 − r24), t3 = 1

2 (r24 + r14 − r12), w3 = 1
2 (r34 + r13 − r14)

(24)

are independent, positive and can be considered as the six perimetric coordinates defined at the
surface of tetrahedron which represents an arbitrary four-body systems. The inverse relations
take the form

r12 = u1 + u2, r13 = u1 + u3, r23 = u2 + u3

r14 = u1 + s3 + t3 − w3, r24 = u2 + w3 + t3 − s3, r34 = t3 + w3 + s3 − u3.
(25)

The six inequalities, equation (19), must be always obeyed for these six perimetric coordinates.
It follows from here that the three relative coordinates ri4 (i = 1, 2, 3) defined by equation (25)
are non-negative.

In this section, we apply the four-body perimetric coordinates to analytical computation
of the basic four-body integral I4 = I4(a12, a13, a23, a14, a24, a34), equation (9). First, let us
transform the following linear combination of the relative coordinates by using the four-body
perimetric coordinates:

L = a12r12 + a13r13 + a23r23 + a14r14 + a24r24 + a34r34

= (a12 + a13 + a14)u1 + (a12 + a23 + a24)u2 + (a13 + a23 − a34)u3

+ (a14 + a24 + a34)t3 + (a14 − a24 + a34)s3 + (−a14 + a24 + a34)w3

= Au1 + Bu2 + Cu3 + Dt3 + Es3 + Fw3. (26)

This linear form is included into the basic four-body integral I4, equation (9), as the exponential
factor I4 ∼ exp(−L). Various powers of different relative coordinates, e.g., rn

13 and/or
rk

24 can be written in the four-body perimetric coordinates with the use of formulae from
equation (25). For instance, for the rn

13 and rk
24 powers one finds (n > 0 and k > 0)

rn
13 = (u1 + u3)

n =
n∑

m=0

Cm
n um

1 u
(n−m)
3 (27)

rk
24 = (u2 + w3 + t3 − s3)

k =
k∑

m1=0

C
m1
k (w3 + t3 − s3)

m1u
k−m1
2

=
k∑

m1=0

m1∑
m2=0

C
m1
k Cm2

m1
(t3 − s3)

m2w
m1−m2
3 u

k−m1
2

=
k∑

m1=0

m1∑
m2=0

m2∑
m3=0

(−1)m3C
m1
k Cm2

m1
Cm3

m2
sm3 t

m2−m3
3 w

m1−m2
3 w

m1−m2
3 u

k−m1
2 .

(28)

These formulae allow one to construct different variational expansions of the unknown four-
body wavefunctions written in perimetric coordinates.

Note also that from equation (31) one can obtain the six following restrictions for the
nonlinear parameters a12, a13, a23, a14, a24, a34 which are used in the I4 integral computation.
Indeed, since each of the four-body perimetric coordinates is non-negative and the I4 integral
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contains the same exponential factor ∼exp(−L), then from equation (31) we have

A = a12 + a13 + a14 � 0, B = a12 + a23 + a24 � 0, C = a13 + a23 − a34 � 0

D = a14 + a24 + a34 � 0, E = a14 − a24 + a34 � 0, F = −a14 + a24 + a34 � 0.

(29)

In computations with N basis functions, these conditions must be checked for each basis
function. As follows from equation (29) often it is not sufficient to choose only positive
nonlinear parameters, since the corresponding four-body integrals I4 may still be divergent.
The divergence of one four-body (basic) integral in one matrix element (e.g., of 10 000 matrix
elements) means numerical collapse of the whole procedure.

The Jacobian of the (r12, r13, r23, r14, r24, r34) → (u1, u2, u3, t3, s3, w3) transformation is

det

[
∂(r12, r13, r23, r14, r24, r34)

∂(u1, u2, u3, t3, s3, w3)

]
= 8. (30)

Note that the corresponding Jacobian in the three-body case equals 2 (see, the factor in front
of the right-hand side of equation (6)). Thus, the basic four-body integral, equation (9), in the
relative variables can now be written in the form

I4(a12, a13, a23, a14, a24, a34) =
∫∫∫∫∫∫

dr12 dr13 dr23 dr14 dr24 dr34

× exp(−a12r12 − a13r13 − a23r23 − a14r14 − a24r24 − a34r34)

= 8
∫ +∞

0

∫ +∞

0

∫ +∞

a3

∫ +∞

b1

∫ u2+u3

b2

∫ B3

b3

exp(−L) du1 du2 du3 dt3 ds3 dw3

= 8
∫ +∞

0
exp[−(a12 + a13 + a14)u1] du1

∫ +∞

0
exp[−(a12 + a23 + a24)u2] du2

×
∫ +∞

a3

exp[−(a13 + a23 − a34)u3] du3

∫ +∞

b1

exp[−(a14 + a24 + a34)t3] dt3

×
∫ B2

b2

exp[−(a14 − a24 + a34)s3] ds3

∫ B3

b3

exp[−(−a14 + a24 + a34)w3] dw3

(31)

where the six remaining lower and upper limits a3, b1, b2, b3 and B2, B3 may also depend
upon the perimetric coordinates included in the following integrals; e.g., the lower limit b1

limit can depend upon the three perimetric coordinates u1, u2 and u3.
Thus, the remaining question is to determine the limits for the perimetric coordinates used

in various four-body integrals, including the basic four-body integral I4, equation (31). Those
inequalities can be written in the form

max(0; u3 − t3) � s3 � u2 + u3

max(0; u3 − t3; s3 − u2) � w3 � min(u1 + u3; u1 + s3).
(32)

Here and below, we shall consider the perimetric coordinates u1, u2, u3 and t3 as the main
(or leading) variables, while the s3 and w3 perimetric coordinates are assumed to be the two
supplement variables. Also, we shall assume that the first integration is taken over the w3

coordinate, while the integration integration is performed over the s3 coordinate. The arising
expression is the uniform function of the leading perimetric coordinates u1, u2, u3 and t3 only.
At the last step this expression must be integrated over these four coordinates.

The inequalities, equation (32), separate the six-dimensional space of four-body perimetric
coordinates into a number of different regions/areas. Let us consider the structure of such a
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separation in detail. First, note that there are the two following possibilities: (a) u3 � t3 and
(b) u3 � t3. In case (a) we have

u3 − t3 � s3 � u2 + u3, max(u3 − t3; s3 − u2) � w3 � min(u1 + u3; u1 + s3) (33)

while in case (b)

0 � s3 � u2 + u3, max(0; s3 − u2) � w3 � min(u1 + u3; u1 + s3). (34)

Below, we restrict ourselves to case (b) (case (a) can be considered analogously). Now, there
are the two following subcases: (b.1) s3 � u3 and (b.2) s3 � u3. In subcase (b.1), one finds

0 � s3 � u3, max(0; s3 − u2) � w3 � u1 + s3. (35)

Here, again we have the two following subcases: (b.1.1) s3 � u2 and (b.1.2) s3 � u2. In the
second subcase, one finds

u2 � s3 � u3, s3 − u2 � w3 � u1 + s3. (36)

These inequalities and one additional inequality u3 � t3 mentioned earlier determine the
corresponding limits in the six-dimensional integral, equation (31). In this case the integral I4

takes the form

I4 = 8
∫ ∞

0
exp[−(a12 + a13 + a14)u1] du1

∫ ∞

0
exp[−(a12 + a23 + a24)u2] du2

×
∫ ∞

u2

exp[−(a13 + a23 − a34)u3] du3

∫ ∞

u3

exp[−(a14 + a24 + a34)t3] dt3

×
∫ u3

u2

exp[−(a14 − a24 + a34)s3] ds3

∫ u1+s3

s3−u2

exp[−(−a14 + a24 + a34)w3] dw3.

(37)

The complete computation of these integrals is straightforward (but laborious) with the
use of the following formula:∫ b

a

exp(−γ x) dx = 1

γ
[exp(−γ a) − exp(−γ b)]. (38)

The computation of the integral in equation (37) produces the following expression

I4 = 8

F(E + F)D(C + D + E + F)(C + D)

[
C − D

(A + F)B
+

C + D

(B − F)A

+
C + D + E + F

(A + F)(B + E + F)
− C + D + E + F

A(B + E)
− E + F

(A + F)(B + C + D + E + F)

+
E + F

A(B + C + D + E)

]
(39)

where A,B,C,D,E and F are defined in equation (29). In general, to compute the integral
I4(a12, a13, a23, a14, a24, a34) one needs to consider at least eight different areas of the original
six-dimensional space. However, in each of these cases, the analytical computations of the
basic four-body integral I4(a12, a13, a23, a14, a24, a34) can be easily performed by using various
platforms for analytical computations such as MAPLE1. The arising analytical expression
for the basic four-body integral I4(a12, a13, a23, a14, a24, a34) has a relatively simple structure,
but contains a large number of terms. Note only that the correct final expression must be
symmetric, i.e. it does not change its form, if some of the vertices/faces in the tetrahedron are

1 The MAPLE package is the product of Waterloo Maple Inc., Waterloo, Ontario, Canada (http://www.maplesoft.
com).

http://www.maplesoft.com
http://www.maplesoft.com
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interchanged (i ↔ j , where i �= j = (1, 2, 3, 4)). In the future, we hope to use this symmetry
to simplify the analytical computations of the four-body integral I4(a12, a13, a23, a14, a24, a34),
equation (9).

In fact, after performing the analytical computations of the basic four-body integral
I4(a12, a13, a23, a14, a24, a34), equation (9), we have found that some other types of the four-
body integrals can also be considered as the basic integrals for four-body bound state
computations. For instance, in equation (37) instead of exponents upon s3 and w3 one
may use the corresponding power-type or cosine-type functions. The four-body integrals will
converge in such cases also, since the variables s3 and w3 vary between the finite limits. This
allows one to construct a number of very flexible variational expansions (not only exponential
expansion) in the four-body perimetric coordinates. It is interesting to note that, if we replace,
e.g., each of the cosine-functions of the s3 and w3 variables by unity, then we can approximate
an arbitrary four-body function (which depends upon the six variables) by using the four non-
compact four-body variables (u1, u2, u3 and t3) only. This remarkable fact was first noticed
and used by Hylleraas and Ore [6].

6. Conclusion

Thus, we have shown that six four-body perimetric coordinates do exist and can be
determined as described above. These six perimetric coordinates u1, u2, u3, s3, t3 and w3

are independent and always positive. Furthermore, these six coordinates are uniformly related
to the corresponding relative (or interparticle) coordinates rij = rji = |ri − rj |, where
i �= j = (1, 2, 3, 4). It is important to note that all such relations (and corresponding
inverse relations) take a linear form. This produces a significant number of advantages in
numerical/analytical computations of various four-body integrals which are needed in bound-
state problems. In fact, now the computation of any four-body integral can be performed
in layers, i.e. by integrating all six perimetric coordinates one-by-one. This is impossible
to achieve in the case of relative coordinates, where one has to consider 24 additional
inequalities/constrains. In general, the four-body perimetric coordinates also have a great
potential in applications to many other four-body problems, including photodetachment and
scattering problems. It is also shown that the four-body perimetric coordinates are closely
related to the geometry of tetrahedrons.

In fact, the six four-body perimetric coordinates do not have all properties known for
the three-body perimetric coordinates. In particular, six additional constrains (= inequalities)
must be obeyed for the four-body perimetric coordinates. These six inequalities produce some
problems during various operations with the four-body perimetric coordinates. Nevertheless,
this work opens a new avenue in studying of the four-body systems with arbitrary particles
masses, types of interactions between the particles, particle symmetries, etc. The procedure
developed in this study can be applied to many actual systems, including lithium atoms and
lithium-like ions, various exotic systems (e.g., bi-positronium molecule Ps2 (e+e−e+e−), HPs
system (H+e−e+e−), bi-muonic molecules dtµµ, ttµµ, etc), nuclear and hypernuclear systems
(e.g., α particle and 4

� He).
The perimetric four-body coordinates are very convenient to obtain and study the

conditions for convergence of various four-body integrals written in relative coordinates.
In particular, such ‘convergence’ conditions for the nonlinear parameters in an arbitrary
exponential integral are written in the form of equation (29). As mentioned above the four-
body integral I4(a12, a13, a23, a14, a24, a34) defined in above (see, equation (9)) has a number
of advantages in actual computations in comparison to the I4 integral, equation (12), and
integral J4 mentioned in the appendix. In particular, the tracking of singularities is very
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easy for the I4(a12, a13, a23, a14, a24, a34) integral and its partial derivatives in respect to the
nonlinear parameters a12, a13, a23, a14, a24 and a34.

Also note that our present method can be generalized to define nine independent perimetric
coordinates for an arbitrary five-body system. In general, there are ten interparticle distances
in arbitrary five-body system

(
C2

5 = 10
)
, but only nine such coordinates are independent.

This produces a difficult problem to exclude one unnecessary coordinate. For the exponential
five-body expansion explicitly written in the relative coordinates r12, r13, . . . , r35, r45 such a
problem is extremely difficult. On the other hand, only nine five-body perimetric coordinates
can be introduced for an arbitrary five-body system, i.e. here we do not need to exclude any
unnecessary coordinate. Indeed, the two tetrahedrons (1234) and (1235) which are placed
at one common face (e.g., (123)) have only 9 (nine) edges. These nine edges correspond to
the nine independent relative coordinates r12, r13, r23, r14, r24, r34, r15, r25, r35 and only these
coordinates are used to form the nine independent five-body perimetric coordinates. The
relative coordinate r45 does not appear in the following formulae at all. Very likely that the
introduction of the five-body perimetric coordinates has many other advantages, but this is
the goal for the future studies. Note only that the current progress in studying of the five-body
systems is very modest in comparison even to the four-body case.
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Appendix.

For atomic (=one-centre) four-body systems, there is another method which is essentially
based on the original Hylleraas expansion for the three-body systems. In the case of the
four-body atom/ion the corresponding variational expansion takes the form

� = A
{[

N∑
i=1

Ci · r
n1,i

23 · r
n2,i

13 · r
n3,i

12 · r
m1,i

14 · r
m2,i

24 · r
m3,i

34

]
· exp(−α · r14 − β · r24 − γ · r34)

}

= A
{[

N∑
i=1

Ci · pi(r12, r13, r23, r14, r24, r34)

]
· exp(−α · r14 − β · r24 − γ · r34)

}
(A.1)

where all nk,i and ml,i are non-negative integer numbers, and α, β and γ are the only three
nonlinear parameters. Here ri4 are the electron–nucleus relative coordinates, while rij are the
three electron–electron coordinates (i �= j = (1, 2, 3)). The operator A is the corresponding
(anti-)symmertizator, i.e. the operator which produces the trial wavefunction of the correct
permutation symmetry.

The computation of matrix elements in this basis is reduced to the problem of
analytical/numerical computation of the following auxiliary four-body integrals

J4(K,L,M, n1, n2, n3, α, β, γ ) =
∫∫∫

rK+2
14 rL+2

24 rM+2
34 r

n3
12r

n2
13r

n1
23

× exp(−αr14 − βr24 − γ r34) dr14 dr24 dr34 (A.2)

where K,L,M, n1, n2, n3 are integer numbers, while α, β, γ are three real (positive) numbers.
Numerical computation of these integrals is a routine procedure well described in the literature
(see, e.g., [5, 7–10] and references therein). Some of the auxiliary integrals J4 computed
numerically can also be found in table 1.
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Finally, it was found that the variational method based on the variational expansion,
equation (A.1), provides a sufficient numerical accuracy for some atomic (i.e. one-centre)
Coulomb systems. However, despite numerous claims made in the modern literature, for
an arbitrary four-body systems, including Coulomb systems with arbitrary particle masses
this method is not accurate. For instance, for the bi-positronium Ps2 it fails to provide even
relatively accurate results. Moreover, in the case of Ps2 and for many other four-body systems
the construction of trial wavefunctions in the form equation (A.1) with the correct permutation
symmetry is a very complicated problem. The reason for this is quite clear, since electron–
electron correlations are considered in equation (A.1) as perturbations. For some systems,
e.g., for the Be+ ion the perturbation series converges quite fast, while for other systems (e.g.,
for the bi-positronium Ps2) such series converge very slow. In general, any method developed
for highly accurate computations of arbitrary four-body systems can be based only on the use
of four-body integrals such as I4 and I4 discussed in the main text.
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